
Unit Commitment for BC-Hydro's MICA Dam
Generating Plant using a Genetic Algorithm Approach

Shabnam Khatami*, Jeff Breadner** and John A. Meech**

University of British Columbia,

* Department of Mechanical Engineering and
** Department of Mining and Mineral Process Engineering,

Vancouver, B.C., V6T 1Z4
Email: shabnam@mech.ubc.ca , breadner@telus.net , jam@mining.ubc.ca

Abstract
In this paper we describe a Genetic Algorithm approach to derive the best unit commitment for the MICA
Dam Generating Plant in the BC Hydro Electric Power System for a 24 hour scheduling. This plant consists
of 4 turbines (units) and the optimal combo for each hour must meet the forecast load for that particular
hour while using the least amount of water, subject to certain constraints. The combination of all 24-hour
combos must also attempt to minimize number of on/off switches over the full 24 hours.

Introduction
One of the operating decisions that must be made at a hydroelectric power plant having more than one
turbine (unit) is which of the units should be operating. The question of which unit to operate is termed the
“unit commitment” (UC) problem. For a plant with multiple units, it is generally possible to generate a
specific plant load, with the reservoir at a particular forebay elevation, using different unit commitments
and individual unit loadings. So the issue arises as to which of these solutions is best.

BC-Hydro use a program called SPUC to calculate the optimal loading for each unit for a given availability
of units. The name SPUC is an acronym for "Static Plant Unit Commitment"; the word "static" referring to
the fact that the results produced by SPUC are valid for a particular instant. So if a "snapshot" can be taken
of the plant at a particular point in time, SPUC calculates the most efficient unit commitment and load
UC&L. SPUC has been run for the MICA plant in the BC Hydro system (see Fig. 1), and the results are
stored in the SPUC database. In SPUC, a particular unit commitment is known as a combo. The combo is
the decimal equivalent of a binary number representing the unit commitment in which a value of one
indicates a unit is committed and a zero represents a unit that is off. In calculating the optimal sequence of
unit commitment for MICA plant, we made use of the stored SPUC output to find the amount of water used
for a particular combo given the unit availability, plant load and forebay level by using a Genetic
Algorithm approach. Table 1 presents a selected number of combos from the SPUC database from a total of
more than 25,000 possible combos.

Genetic Algorithms (GAs) are adaptive evolutionary methods which can be used to solve search and
optimization problems such as this one. They are based on the genetic processes of biological organisms.
Over many generations, natural populations evolve according to the principles of natural selection and
"survival of the fittest". By mimicking this process, genetic algorithms are able to evolve solutions to real
world problems. They work with a population of individuals, each representing a possible solution. Each
individual is assigned a "fitness score" according to how good the solution solves the problem. Individual
solutions with a high fitness value are given opportunities to reproduce, by breeding with other "fit"
individual solutions in the population. This produces new individuals as offspring, which share some
features taken from each parent. The least fit members of the population are less likely to be selected for
reproduction, and so they die off. A whole new population of possible solutions is thus produced by
selecting the best individuals from the current generation, and mating them to produce a new set of
individuals. If the GA is well-designed, the population will converge to the optimal solution to the problem.

Fig. 1. The Columbia River System showing installed hydropower projects. Mica is at the top of the map.

Genetic Algorithms differ from more traditional optimization and search procedures in four ways:

1. GAs work with a coding of the parameter set, not the parameters themselves.
2. GAs search from a population of points, not a single point.
3. GAs use payoff (objective function) information, not derivatives or other auxiliary knowledge.
4. GAs use probabilistic transition rules, not deterministic rules.

GAs work from a rich database of points simultaneously (a population of strings), climbing many peaks in
parallel; thus, the probability of finding a false peak is reduced over methods that go from point to point.
The mechanics of a simple genetic algorithm involves nothing more complex than to copy strings and swap
partial strings. The explanation of why this simple process works is subtle and yet it is extremely powerful.
Simplicity of operation and the power of the effect (speed and accuracy) are two of the main attractions of
genetic algorithms.

 A simple genetic algorithms that yields good results in many practical problems is composed of three
operators:

1. Reproduction
2. Crossover
3. Mutation

Reproduction is a process in which individual strings are selected according to their objective function
value f (biologists call this function - the fitness function). Intuitively, we can think of the function f as
some measure of profit, utility, or goodness that we want to maximize. Selecting strings according to their
fitness values means that strings with a higher value have a higher probability of contributing offspring to
the next generation.

After reproduction, crossover proceeds in two steps. First, members of the newly reproduced strings in the
mating pool are mated at random. Second, each pair of strings undergoes crossover as follows: an integer
position k along the string is selected uniformly at random between 1 and the string length less one [1, l-1].
Two new strings are created by swapping all characters between position k+1 and l inclusively.

Mutation plays a decidedly secondary role in the operation of genetic algorithms. Mutation is needed
because, despite the fact that reproduction and crossover search and recombine existant notions,
occasionally they may lose some potentially useful genetic material. The mutation operation involves
periodically selecting one individual at random, selecting one position on the chromosome string and
transposing it from 0 to 1 or vice-versa. Mutation restores diversity but does not provide a logical approach
to optimization. Its use should be restricted to situations where a local minima (or maxima) has trapped the
algorithm and a new population member is required to trigger the crossover operator on to a better result.

Description of the Application of GA for the MICA Plant
GA’s have received considerable attention regarding their potential to deal with constrained problems. In
calculating the optimal sequence of unit commitment for the MICA plant, we are trying to apply GA to find
the best solution which uses the minimum amount of water and has the minimum number of unit switches
over a 24-hour period given unit availability, plant load and forebay level as inputs for each hour subject to
the following constraints:

1. A minimum of 2 units must always be on line.
2. units G1 and G2 are identical.
3. G4 is the last unit on or off to minimize operation of it's unit breaker.

In the above constraints, G1,G2, G3 and G4 indicate unit 1 to 4 for MICA plant . G1 and G2 are similar
units with a maximum capacity of 435 MW. The maximum capacity for unit 3 is 465MW while G4 is
limited to 400 MW due to vibration problems.

Using GA , we need to define each possible solution for 24 hours as a string or "chromosome". As we have
a combo of 4 binary number indicating the status of each unit for each hour, we have to consider a rather
large chromosome size of 96 genes. This makes convergence very slow unless the appropriate population
size and appropriate crossover choice and mutation rate are chosen. To acheive a faster and easier
approach, we reduced the chromosome size to 16 which allows the algorithm to model a 4-hour period. For
each successive run, we can use the state of the last hour of the 4 hour segment in our previous run to solve
for the next 4-hour period. In this way the problem is being solved in the manner of a dynamic-program.
The minimization of switches calculation requires an initial state in order to determine the switch value for
hour 1. For the first run, we ask the user to enter the state of the units at the end of the previous 24 hour
period as an input variable.

To allow the GA to satisfy all the constraints, we have placed them into data tables to allow the calculation
of a fitness score for each possible solution. These look-up tables serve to establish the functional
relationship to be used under the current circumstances in each part of the overall fitness function.

To find the minimum use of water which is our first goal , GA uses the SPUC table as a database in
EXCEL to find the water use for each hour.

Considering the first constraint: we make all combos which have less than two units on-line to be
infeasible. We can achieve this state by simply changing the value of the water use of combos 1, 2, 4, and 8
for all forebay and unit load inputs to a very high value. This high number has been set to four times the
maximum water use in the table to generate a zero (0) fitness score for all those strings which have at least
one of those infeasible combos. We can also satisfy this constraint by modifying the table containing the
number of switches as shown in Table 2. The designation of a 16 in this table for certain sequences of
combos, is simply a vehicle to endure that that particular combination will never be successfully retained in
the system and allowed to reproduce.

Table 2. Number of switches and identification of feasible combos.
 combo k

 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

 Combo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 1 1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

 10 2 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

 11 3 16 16 0 16 2 2 1 16 16 16 16 16 16 16 16

 100 4 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

 101 5 16 16 2 16 0 2 1 16 16 16 16 16 16 16 16

 110 6 16 16 2 16 2 0 1 16 16 16 16 16 16 16 16

 111 7 16 16 1 16 1 1 0 16 16 16 16 16 16 16 16

 1000 8 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

 combo k+1 1001 9 16 16 16 16 16 16 16 16 0 2 1 1 1 3 2

 1010 10 16 16 16 16 16 16 16 16 2 0 1 2 3 1 2

 1011 11 16 16 16 16 16 16 16 16 1 1 0 3 2 2 1

 1100 12 16 16 16 16 16 16 16 16 1 2 3 0 1 1 2

 1101 13 16 16 16 16 16 16 16 16 1 3 2 1 0 2 1

 1110 14 16 16 16 16 16 16 16 16 3 1 2 1 2 0 1

 1111 15 16 16 16 16 16 16 16 16 2 2 1 2 1 1 0

 Feasible sequences of combos for each two successive hours are shown in white

 Appling the given constraints makes the following changes :

 1- Units G1 & G2 are identical. This reduces the number of switches between combos as shown
 2- There must always be a minimum of 2 units on line which eliminates combos 1, 2, 4 & 8.
 3- G4 is the last unit on/off to minimize operation of unit breaker

Mapping the Objective Functions To A Fitness Function
A fitness function must be a nonnegative figure of merit. As a result, it is often necessary to map the
underlying natural objective function to a fitness function through one or more mappings. In normal
operation research work, to transform a minimization problem to a maximization problem, we simply
multiply the function by minus one. In GA, this operation alone is insufficient because the measure thus
obtained is not guaranteed to be nonnegative in all instances. In our case, the two objectives must be
considered together and mapped into a common fitness function. In this project, the objective with the
highest priority is to minimize the amount of water used. If we consider Qi as the water use for each hour
and find Qmax from the SPUC table (which is the maximum amount of water used), we can define the first
element of the fitness function from the use of water for each chromosome in the population as follows:

Qt = 4 Qmax - ∑
=

4

1i

Qi

where 4 Qmax indicates the worst string with the lowest fitness score.

Since we are considering two different fitness function elements, so they must be normalized. For the
above equation, this is accomplished by dividing by 4Qmax as follows:

Qt / 4 Qmax = 1 - ∑
=

4

1i

(Qi/4Qmax)

which creates a number between 0 and 1. Higher values for Qt / 4 Qmax indicates lower amounts of water
used for a particular chromosome during a 4-hour period.

Note that we have assigned 4 Qmax to all infeasible combos in the SPUC table to ensure that the presence of
even one infeasible combo during a 4-hour period will give a fitness value higher than that of the worst
feasible string which has the maximum use of water. So if we have an infeasible combo, this will give a
negative number for Qt / 4 Qmax . To prevent this, we define the following function as the first fitness score
element based on water use for the whole string of combos for 4 hours:

Q = Max (0, Qt/4Qmax)
which gives a fitness score of 0 to all infeasible combos. According to the SPUC table, Qmax =1902, hence,

Q = Max (0, Qt/7608) = Max[0, (1-∑
=

4

1i

(Qi/7608)]

Our second goal is to minimize the number of switches as we move from one hour to the next. Finding the
second fitness score uses a table for the number of switches for each pair of successive combos:

Nt = 4Nmax - ∑
=

4

1i

Ni

in which Nt is the total number of switches over 4 hours and Nmax is the maximum number of switches
shown in the switch table.

After normalizing we have:

Nt / 4Nmax = 1 - ∑
=

4

1i

(Ni/4Nmax)

As indicated for the first fitness function element, a set with an infeasible combo gives a negative number.
So we need to modify this score as well as:

N = Max(0, Nt/ 4Nmax)
Obviously, the maximum number of switches between 4 units is 4 per hour, so we define this element of
the fitness score as:

N = Max(0, Nt/ 16) = Max[0, 1-∑
=

4

1i

(Ni/16)]

The fitness function F will be the sum of these two elements multiplied by a weight based on the priority of
each objective:

F = W1Q + W2N

Assuming W1=0.6 for the goal of minimizing water use and W2=0.4 for minimizing the number of
switches, we obtain the following formula for the fitness function.

 F = 0.6Max [0, 1-∑
=

4

1i

(Qi/7608)] + 0.4Max[0, 1-∑
=

4

1i

(Ni/16)] .

After calculating a fitness value for each member of the population, we can commence reproduction. A
common selection approach assigns a probability of selection, Pi, to each individual based upon its fitness
such that the better individuals have an increased chance of selection.

Pi = Fi / ∑
=

N

i 1

Fi (where N = population size)

For crossover, we allow the point of crossover to vary randomly between 4, 8 or 12 for a 16-gene
chromosome. On each iteration, we generate a random number between 0 and 1 which will switch between
these three crossover points. If the number is below 0.33 , then 4 is chosen , if the number is between 0.34
and 0.66 then 8 is chosen, if the number is above 0.66 then 12 is chosen.

An EXCEL worksheet has been set up to implement these procedures automatically. The spreadsheet can
begin to generate new populations of solutions and find the best solution for each generation. The GA
simulation terminates when the fitness of the best or average population remains the same for more than 2
successive generations.

The input/output worksheet is shown in Fig. 2. Note that the system also includes information about the
previous 2 hour state of the plant in order to properly assess the number of switches.

Fig. 3 presents the form used to provide interim results. The user has the ability to lock certain combos for
another optimization run. In addition, the form contains a drop down menu of alternative feasible solutions
for each hour which can be viewed and assessed by the user.

Fig. 4 presents the increase in average fitness value as a function of generation number. Note that the
starting fitness is a random result of the initially selected 100 solutions. The range of values in the initial
population of solutions ranged between 22 and 80 percent. Note the substantial improvement in the first
generation with the mutation operator after generation 5 providing a jump to a new optimum. Conceivably
better solutions are possible with increased numbers of generations or with a changing probability of
mutation as the number of generations increases. Diversity is a useful property to restore to an evolving
system in order to allow the system to find a new minima (or maxima).

Conclusion
Using the GA approach, we can perform a stochastic global search to find the best combination of unit
status for a 24 hour schedule of the MICA plant having as input data – the unit availability, the forebay
level and the plant loading for each hour, that also satisfies the given constraints. By simplifying the
program to dynamic 4-hour segments, we were able to obtain a faster convergence to the problem. The
robustness and power of GA to find the solution compared to other traditional optimization procedures has
been apparent.

For this application, the GA fitness function needs to be refined. Consideration of unique conditions for
each unit, needs to be built into the fitness function via a third constraint component. As well, the GA
Engine can be completely rewritten so that it does not actually manipulates gene strings as in a classical
GA. In Excel, it would be more efficient to manipulate arrays of combo numbers internally. It is surmised
that with this approach in which the engine handles arrays of numbers instead of gene strings, longer
chromosomes are feasible (perhaps, as large as the entire 24 hours period).

Input: Past Unit Commitment:

 Unit Loading
 Hour Combo G1 G2 G3 G4
 -2 11 Off Off Off 296
 -1 11 Off Off Off 306

 0 11 Off Off Off 316 (Current Status)

Input Output

 Available Unit Loading
Hour ForeBay GPInt Combos Hour Combo G1 G2 G3 G4

1 711 280 15 1 8 Off Off Off 280
2 713 290 15 2 4 Off Off 290 Off
3 715 300 15 3 4 Off Off 300 Off
4 717 310 15 4 4 Off Off 310 Off
5 719 320 15 5 4 Off Off 320 Off
6 721 330 15 6 4 Off Off 330 Off
7 723 340 15 7 4 Off Off 340 Off
8 725 350 15 8 4 Off Off 350 Off
9 727 360 15 9 4 Off Off 360 Off
10 729 370 15 10 4 Off Off 370 Off
11 731 380 15 11 4 Off Off 380 Off
12 733 390 15 12 4 Off Off 390 Off
13 735 400 15 13 4 Off Off 400 Off
14 737 410 15 14 4 Off Off 410 Off
15 739 420 15 15 4 Off Off 420 Off
16 741 430 15 16 4 Off Off 430 Off
17 743 440 15 17 4 Off Off 440 Off
18 745 450 15 18 4 Off Off 450 Off
19 747 460 15 19 4 Off Off 460 Off
20 749 470 15 20 12 Off Off 340 130
21 751 480 15 21 12 Off Off 350 130
22 753 490 15 22 12 Off Off 360 130
23 755 500 15 23 12 Off Off 370 130
24 757 510 15 24 12 Off Off 380 130

Fig. 2. EXCEL Spreadsheet used to input SPUC data and obtain output schedule.

Run Optimizer

Clear Outputs

Fig. 3. EXCEL Form used to produce the optimized daily schedule. The Lock box allows the
user to select a particular combo or set of combos and rerun the Optimizer.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2 4 6 8 10 12

Generation

F
it

n
es

s

Fig. 4. Average fitness value as a function of the generation number.

Acknowledgement
The authors would like to express their appreciation to Dr. Thomas K. Siu, Head of Resource Management
for BC Hydro who set up this problem as a Class Project for a course in Industrial Expert Systems at the
University of British Columbia and who contributed his expertise to the development of the system. Dr.
Ziad Shawwash from Civil Engineering at UBC also contributed considerably to the research performed.

References
1. D.L. Goldberg, 1989. Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-

Wesley.
2. T. Siu, G. Nash, Z. Shawwash, 2000. Expert Systems for Dynamic Unit Commitment and Loading

(DUCL) Program, B.C. Hydro.
3. M. Gen, R. Cheng, 1997. Genetic Algorithms and Engineering Design, Wiley-Interscience.

Table 1. Selected slices of the SPUC database detailing the properties of possible combos from over 25,000 total possibilities.

Plant ID: mica MW > 0: Generating

Number of generator combinations: 15 Forebay minimum: 707 Plant load increment: 10 MW = 0: Speed No Load

Tailwater minimum: 567.54 Forebay increment: 2 Downstream Elevation: 572 MW < 0: S.C.

 MW = -99: Offline

Index Combo GPlnt

(MW)
ForeBay

 (m)
Q_Turb
 (cms)

Eff
(%)

G1
(MW)

G2
(MW)

G3
(MW)

G4
(MW)

Q1
(cms)

Q2
(cms)

Q3
(cms)

Q4
(cms)

Eff1
(%)

Eff2
(%)

Eff3
(%)

Eff4
(%)

G1Max
(MW)

G2Max
(MW)

G3Max
(MW)

G4Max
(MW)

30 1 420 757 7608 86.2 420 -99 -99 -99 262.4 0 0 0 86.2 0 0 0 435 -99 -99 -99

31 1 430 757 7608 86 430 -99 -99 -99 269.2 0 0 0 86 0 0 0 435 -99 -99 -99

417 2 280 707 7608 82.8 -99 280 -99 -99 0 247.3 0 0 0 82.8 0 0 -99 435 -99 -99

418 2 290 707 7608 82.6 -99 290 -99 -99 0 256.9 0 0 0 82.6 0 0 -99 435 -99 -99

921 3 780 709 743.8 75.6 390 390 -99 -99 371.9 371.9 0 0 75.6 75.6 0 0 435 435 -99 -99

922 3 790 709 756.41 75.3 395 395 -99 -99 378.2 378.2 0 0 75.3 75.3 0 0 435 435 -99 -99

923 3 800 709 769.01 75 400 400 -99 -99 384.5 384.5 0 0 75 75 0 0 435 435 -99 -99

2190 4 350 721 7608 87.7 -99 -99 350 -99 0 0 265.4 0 0 0 87.7 0 -99 -99 465 -99

2191 4 360 721 7608 87 -99 -99 360 -99 0 0 275.2 0 0 0 87 0 -99 -99 465 -99

2192 4 370 721 7608 86.1 -99 -99 370 -99 0 0 285.9 0 0 0 86.1 0 -99 -99 465 -99

2675 5 560 709 474.4 85.1 275 -99 285 -99 239.6 0 234.8 0 82.8 0 87.5 0 435 -99 465 -99

2676 5 570 709 483.43 85.1 279 -99 291 -99 243.2 0 240.2 0 82.7 0 87.4 0 435 -99 465 -99

2677 5 580 709 492.77 84.9 286 -99 294 -99 249.7 0 243 0 82.6 0 87.3 0 435 -99 465 -99

4287 6 740 709 681.52 78.3 -99 426 314 -99 0 415.4 266.1 0 0 74 85.1 0 -99 435 465 -99

4288 6 750 709 694.12 77.9 -99 435 315 -99 0 426.6 267.5 0 0 73.6 84.9 0 -99 435 465 -99

4289 6 760 709 707.75 77.5 -99 435 325 -99 0 426.8 281 0 0 73.5 83.4 0 -99 435 465 -99

5650 7 1300 709 1324.8 70.8 435 435 430 -99 438 438 448.8 0 71.6 71.6 69.1 0 435 435 464 -99

5651 7 1310 709 1340.8 70.5 435 435 440 -99 438.3 438.3 464.3 0 71.6 71.6 68.4 0 435 435 464 -99

5652 7 1320 709 1356.9 70.2 435 435 450 -99 438.5 438.5 479.8 0 71.6 71.6 67.6 0 435 435 464 -99

8220 8 310 723 7608 88.9 -99 -99 -99 310 0 0 0 229 0 0 0 88.9 -99 -99 -99 465

8221 8 320 723 7608 88.9 -99 -99 -99 320 0 0 0 236.3 0 0 0 88.9 -99 -99 -99 465

8222 8 330 723 7608 88.8 -99 -99 -99 330 0 0 0 244 0 0 0 88.8 -99 -99 -99 465

9098 9 490 727 385.06 81.4 360 -99 -99 130 273.1 0 0 112 84.4 0 0 74.3 435 -99 -99 465

9099 9 500 727 394.11 81.2 370 -99 -99 130 282.1 0 0 112 83.9 0 0 74.3 435 -99 -99 465

9100 9 510 727 403.53 80.9 380 -99 -99 130 291.5 0 0 112 83.4 0 0 74.3 435 -99 -99 465

MAX 757 1901.2 89.7 1800

MIN 707 85.3 55 100

AVG 732 558.6 83.9 750

