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Abstract 
In this paper we describe a Genetic Algorithm approach to derive the best unit commitment for the MICA 
Dam Generating Plant in the BC Hydro Electric Power System for a 24 hour scheduling. This plant consists 
of 4 turbines (units) and the optimal combo for each hour must meet the forecast load for that particular 
hour while using the least amount of water, subject to certain constraints. The combination of all 24-hour 
combos must also attempt to minimize  number of on/off switches over the full 24 hours. 
 
 
Introduction 
One of the operating decisions that must be made at a hydroelectric power plant having more than one 
turbine (unit) is which of the units should be operating. The question of which unit to operate is termed the 
“unit commitment” (UC) problem. For a plant with multiple units, it is generally possible to generate a 
specific plant load, with the reservoir at a particular forebay elevation, using different unit commitments 
and individual unit loadings. So the issue arises as to which of these solutions is best. 
 
BC-Hydro use a program called SPUC to calculate the optimal loading for each unit for a given availability 
of units. The name SPUC is an acronym for "Static Plant Unit Commitment"; the word "static" referring to 
the fact that the results produced by SPUC are valid for a particular instant. So if a "snapshot" can be taken 
of the plant at a particular point in time, SPUC calculates the most efficient unit commitment and load 
UC&L. SPUC has been run for the MICA plant in the BC Hydro system (see Fig. 1), and the results are 
stored in the SPUC database. In SPUC, a particular unit commitment is known as a combo. The combo is 
the decimal equivalent of a binary number representing the unit commitment in which a value of one 
indicates a unit is committed and a zero represents a unit that is off. In calculating the optimal sequence of 
unit commitment for MICA plant, we made use of the stored SPUC output to find the amount of water used 
for a particular combo given the unit availability, plant load and forebay level by using a Genetic 
Algorithm approach. Table 1 presents a selected number of combos from the SPUC database from a total of 
more than 25,000 possible combos. 
 
Genetic Algorithms (GAs) are adaptive evolutionary methods which can be used to solve search and 
optimization problems such as this one. They are based on the genetic processes of biological organisms. 
Over many generations, natural populations evolve according to the principles of natural selection and 
"survival of the fittest".  By mimicking this process, genetic algorithms are able to evolve solutions to real 
world problems. They work with a population of individuals, each representing a possible solution. Each 
individual is assigned a "fitness score" according to how good the solution solves the problem. Individual 
solutions with a high fitness value are given opportunities to reproduce, by breeding with other "fit" 
individual solutions in the population. This produces new individuals as offspring, which share some 
features taken from each parent. The least fit members of the population are less likely to be selected for 
reproduction, and so they die off. A whole new population of possible solutions is thus produced by 
selecting the best individuals from the current generation, and mating them to produce a new set of 
individuals. If the GA is well-designed, the population will converge to the optimal solution to the problem. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The Columbia River System showing installed hydropower projects. Mica is at the top of the map. 
 
Genetic Algorithms differ from more traditional optimization and search procedures in four ways: 

1. GAs work with a coding of the parameter set, not the parameters themselves. 
2. GAs search from a population of points, not a single point. 
3. GAs use payoff (objective function) information, not derivatives or other auxiliary knowledge. 
4. GAs use probabilistic transition rules, not deterministic rules. 

 
GAs work from a rich database of points simultaneously (a population of strings), climbing many peaks in 
parallel; thus, the probability of finding a false peak is reduced over methods that go from point to point. 
The mechanics of a simple genetic algorithm involves nothing more complex than to copy strings and swap 
partial strings. The explanation of why this simple process works is subtle and yet it is extremely powerful. 
Simplicity of operation and the power of the effect (speed and accuracy) are two of the main attractions of 
genetic algorithms. 
 
 A simple genetic algorithms that yields good results in many practical problems is composed of three 
operators: 
 

1. Reproduction 
2. Crossover 
3. Mutation 

        
Reproduction is a process in which individual strings are selected according to their objective function 
value f  (biologists call this function - the fitness function). Intuitively, we can think of the function f as 
some measure of profit, utility, or goodness that we want to maximize. Selecting strings according to their 
fitness values means that strings with a higher value have a higher probability of contributing offspring to 
the next generation.  
 
After reproduction, crossover proceeds in two steps. First, members of the newly reproduced strings in the 
mating pool are mated at random. Second, each pair of strings undergoes crossover as follows: an integer 
position k along the string is selected uniformly at random between 1 and the string length less one [1, l-1]. 
Two new strings are created by swapping all characters between position  k+1 and l inclusively.  



Mutation plays a decidedly secondary role in the operation of genetic algorithms. Mutation is needed 
because, despite the fact that reproduction and crossover search and recombine existant notions, 
occasionally they may lose some potentially useful genetic material. The mutation operation involves 
periodically selecting one individual at random, selecting one position on the chromosome string and 
transposing it from 0 to 1 or vice-versa.  Mutation restores diversity but does not provide a logical approach 
to optimization. Its use should be restricted to situations where a local minima (or maxima) has trapped the 
algorithm and a new population member is required to trigger the crossover operator on to a better result. 
 
 
Description of the Application of GA for the MICA Plant 
GA’s have received considerable attention regarding their potential to deal with constrained problems. In 
calculating the optimal sequence of unit commitment for the MICA plant, we are trying to apply GA to find 
the best solution which uses the minimum amount of water and has the minimum number of unit switches 
over a 24-hour period given unit availability, plant load and forebay level as inputs for each hour subject to 
the following constraints: 
 

1. A minimum of 2 units must always be on line. 
2. units G1 and G2 are identical. 
3. G4 is the last unit on or off to minimize operation of it's unit breaker. 

 
In the above constraints, G1,G2, G3 and G4 indicate unit 1 to 4 for MICA plant . G1 and G2 are similar 
units with a maximum capacity of 435 MW. The maximum capacity for unit 3 is 465MW while G4 is 
limited to 400 MW due to vibration problems. 
 
Using GA , we need to define each possible solution for 24 hours as a string or "chromosome". As we have 
a combo of 4 binary number indicating the status of each unit  for each hour, we have to consider a rather 
large chromosome size of 96 genes. This makes convergence very slow unless the appropriate population 
size and appropriate crossover choice and mutation rate are chosen. To acheive a faster and easier 
approach, we reduced the chromosome size to 16 which allows the algorithm to model a 4-hour period. For 
each successive run, we can use the state of the last hour of  the 4 hour segment in our previous run to solve 
for the next 4-hour period. In this way the problem is being solved in the manner of a dynamic-program. 
The minimization of switches calculation requires an initial state in order to determine the switch value for 
hour 1. For the first run, we ask the user to enter the state of the units at the end of the previous 24 hour 
period as an input variable.  
 
To allow the GA to satisfy all the constraints, we have placed them into data tables to allow the calculation 
of a fitness score for each possible solution. These look-up tables serve to establish the functional 
relationship to be used under the current circumstances in each part of the overall fitness function. 
 
To find the minimum use of water which is our first goal , GA uses the SPUC table as a database in 
EXCEL to find the water use for each hour.  
 
Considering the first constraint: we make all combos which have less than two units on-line to be 
infeasible. We can achieve this state by simply changing the value of the water use of combos 1, 2, 4, and 8 
for all forebay and unit load inputs to a very high value. This high number has been set to four times the 
maximum water use in the table to generate a zero (0) fitness score for all those strings which have at least 
one of those infeasible combos. We can also satisfy this constraint by modifying the table containing the 
number of switches as shown in Table 2. The designation of a 16 in this table for certain sequences of 
combos, is simply a vehicle to endure that that particular combination will never be successfully retained in 
the system and allowed to reproduce. 
 
 



Table 2. Number of switches and identification of feasible combos. 
            combo k         
                      
      1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111  

    Combo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  

    1 1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  

    10 2 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  

    11 3 16 16 0 16 2 2 1 16 16 16 16 16 16 16 16  

    100 4 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  

    101 5 16 16 2 16 0 2 1 16 16 16 16 16 16 16 16  

    110 6 16 16 2 16 2 0 1 16 16 16 16 16 16 16 16  

    111 7 16 16 1 16 1 1 0 16 16 16 16 16 16 16 16  

    1000 8 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  

 combo k+1 1001 9 16 16 16 16 16 16 16 16 0 2 1 1 1 3 2  

    1010 10 16 16 16 16 16 16 16 16 2 0 1 2 3 1 2  

    1011 11 16 16 16 16 16 16 16 16 1 1 0 3 2 2 1  

    1100 12 16 16 16 16 16 16 16 16 1 2 3 0 1 1 2  

    1101 13 16 16 16 16 16 16 16 16 1 3 2 1 0 2 1  

    1110 14 16 16 16 16 16 16 16 16 3 1 2 1 2 0 1  

    1111 15 16 16 16 16 16 16 16 16 2 2 1 2 1 1 0  

                 
  Feasible sequences of combos for each two successive hours are shown in white  
                  
  Appling the given constraints makes the following changes :     
                  
 1- Units G1 & G2 are identical. This reduces the number of switches between combos as shown  
 2- There must always be a minimum of 2 units on line which eliminates combos 1, 2, 4 & 8.    
 3- G4 is the last unit on/off to minimize operation of unit breaker         

 
Mapping the Objective Functions To A Fitness Function 
A fitness function must be a nonnegative figure of merit. As a result, it is often necessary to map the 
underlying natural objective function to a fitness function through one or more mappings. In normal 
operation research work, to transform a minimization problem to a maximization problem, we simply 
multiply the function by minus one. In GA, this operation alone is insufficient because the measure thus 
obtained is not guaranteed to be nonnegative in all instances. In our case, the two objectives must be 
considered together and mapped into a common fitness function. In this project, the objective with the 
highest priority is to minimize the amount of water used. If we consider Qi as the water use for each hour 
and  find Qmax from the SPUC table (which is the maximum amount of water used), we can define the first 
element of the fitness function from the use of water for each chromosome in the population as follows: 
 

Qt   =  4 Qmax - ∑
=

4

1i

Qi 

where 4 Qmax indicates the worst string with the lowest fitness score. 
 
Since we are considering two different fitness function elements, so they must be normalized. For the 
above equation, this is accomplished by dividing  by 4Qmax as follows: 
 



Qt / 4 Qmax   =   1  -  ∑
=

4

1i

(Qi/4Qmax) 

which creates a number between 0 and 1. Higher values for Qt / 4 Qmax indicates  lower amounts of water 
used for a particular chromosome during a 4-hour period. 
 
Note that we have assigned 4 Qmax to all infeasible combos in the SPUC table to ensure that the presence of 
even one infeasible combo during a 4-hour period will give a fitness value higher than that of the worst 
feasible string which has the maximum use of water. So if we have an infeasible combo, this will give a 
negative number for Qt / 4 Qmax . To prevent this, we define the following function as the first fitness score 
element based on water use for the whole string of combos for 4 hours: 
 

Q = Max (0, Qt/4Qmax) 
which gives a fitness score of 0 to all infeasible combos. According to the SPUC table, Qmax =1902, hence, 
 

Q = Max (0, Qt/7608) = Max[0, (1-∑
=

4

1i

(Qi/7608)] 

 
Our second goal is to minimize the number of switches as we move from one hour to the next. Finding the 
second fitness score uses a table for the number of switches for each pair of successive combos: 
 

Nt  =  4Nmax - ∑
=

4

1i

Ni 

 
in which Nt is the total number of switches over 4 hours and Nmax is the maximum number of switches 
shown in the switch table.  
 
After normalizing we have: 

Nt / 4Nmax   = 1 - ∑
=

4

1i

(Ni/4Nmax) 

 

As indicated for the first fitness function element, a set with an infeasible combo gives a negative number. 
So we need to modify this score as well as: 
 

N  =  Max(0, Nt/ 4Nmax ) 
Obviously, the maximum number of switches between 4 units is 4 per hour, so we define this element of 
the fitness score as: 

N = Max(0, Nt/ 16 ) = Max[0, 1-∑
=

4

1i

(Ni/16)] 

 

The fitness function F will be the sum of these two elements multiplied by a weight based on the priority of 
each objective:  
 

F = W1Q + W2N 
 
Assuming W1=0.6 for the goal of minimizing water use and W2=0.4 for minimizing the number of 
switches, we obtain the following formula for the fitness function. 
 

     F = 0.6Max [0, 1-∑
=

4

1i

(Qi/7608)] + 0.4Max[0, 1-∑
=

4

1i

(Ni/16)]       .     



  

After calculating a fitness value for each member of the population, we can commence reproduction. A 
common selection approach assigns a probability of selection, Pi, to each individual based upon its fitness 
such that the better individuals have an increased chance of selection. 
 

Pi = Fi / ∑
=

N

i 1

Fi             (where N = population size) 

 
For crossover, we allow the point of crossover to vary randomly between 4, 8 or 12 for a 16-gene 
chromosome. On each iteration, we generate a random number between 0 and 1 which will switch between 
these three crossover points. If the number is below 0.33 , then 4 is chosen , if the number is between 0.34 
and 0.66 then 8 is chosen, if the number is above 0.66 then 12 is chosen.  
 
An EXCEL worksheet has been set up to implement these procedures automatically. The spreadsheet can 
begin to generate new populations of solutions and find the best solution for each generation. The GA 
simulation terminates when the fitness of the best or average population remains the same for more than 2 
successive generations.  
 
The input/output worksheet is shown in Fig. 2. Note that the system also includes information about the 
previous 2 hour state of the plant in order to properly assess the number of switches. 
 
Fig. 3 presents the form used to provide interim results. The user has the ability to lock certain combos for 
another optimization run. In addition, the form contains a drop down menu of alternative feasible solutions 
for each hour which can be viewed and assessed by the user. 
 
Fig. 4 presents the increase in average fitness value as a function of generation number. Note that the 
starting fitness is a random result of the initially selected 100 solutions. The range of values in the initial 
population of solutions ranged between 22 and 80 percent. Note the substantial improvement in the first 
generation with the mutation operator after generation 5 providing a jump to a new optimum. Conceivably 
better solutions are possible with increased numbers of generations or with a changing probability of 
mutation as the number of generations increases. Diversity is a useful property to restore to an evolving 
system in order to allow the system to find a new minima (or maxima). 
 
 
Conclusion 
Using the GA approach, we can perform a stochastic global search to find the best combination of unit 
status for a 24 hour schedule of the MICA plant having as input data – the unit availability, the forebay 
level and the plant loading for each hour, that also satisfies the given constraints. By simplifying the 
program to dynamic 4-hour segments, we were able to obtain a faster convergence to the problem. The 
robustness and power of GA to find the solution compared to other traditional optimization procedures has 
been apparent. 
 
For this application, the GA fitness function needs to be refined. Consideration of unique conditions for 
each unit, needs to be built into the fitness function via a third constraint component. As well, the GA 
Engine can be completely rewritten so that it does not actually manipulates gene strings as in a classical 
GA. In Excel, it would be more efficient to manipulate arrays of combo numbers internally. It is surmised 
that with this approach in which the engine handles arrays of numbers instead of gene strings, longer 
chromosomes are feasible (perhaps, as large as the entire 24 hours period). 
 
 
 



 
Input:     Past Unit Commitment:  

       Unit Loading 
     Hour Combo G1 G2 G3 G4 
     -2 11 Off Off Off 296 
     -1 11 Off Off Off 306 

 

     0 11 Off Off Off 316 (Current Status) 

            
Input  Output  

   Available    Unit Loading  
Hour ForeBay GPInt Combos  Hour Combo G1 G2 G3 G4  

1 711 280 15  1 8 Off Off Off 280  
2 713 290 15  2 4 Off Off 290 Off  
3 715 300 15  3 4 Off Off 300 Off  
4 717 310 15  4 4 Off Off 310 Off  
5 719 320 15  5 4 Off Off 320 Off  
6 721 330 15  6 4 Off Off 330 Off  
7 723 340 15  7 4 Off Off 340 Off  
8 725 350 15  8 4 Off Off 350 Off  
9 727 360 15  9 4 Off Off 360 Off  
10 729 370 15  10 4 Off Off 370 Off  
11 731 380 15  11 4 Off Off 380 Off  
12 733 390 15  12 4 Off Off 390 Off  
13 735 400 15  13 4 Off Off 400 Off  
14 737 410 15  14 4 Off Off 410 Off  
15 739 420 15  15 4 Off Off 420 Off  
16 741 430 15  16 4 Off Off 430 Off  
17 743 440 15  17 4 Off Off 440 Off  
18 745 450 15  18 4 Off Off 450 Off  
19 747 460 15  19 4 Off Off 460 Off  
20 749 470 15  20 12 Off Off 340 130  
21 751 480 15  21 12 Off Off 350 130  
22 753 490 15  22 12 Off Off 360 130  
23 755 500 15  23 12 Off Off 370 130  
24 757 510 15  24 12 Off Off 380 130  

 

Fig. 2. EXCEL Spreadsheet used to input SPUC data and obtain output schedule.  
 

 

 

Run Optimizer 

Clear Outputs 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. EXCEL Form used to produce the optimized daily schedule. The Lock box allows the 
user to select a particular combo or set of combos and rerun the Optimizer. 
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Fig. 4. Average fitness value as a function of the generation number. 
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Table 1. Selected slices of the SPUC database detailing the properties of possible combos from over 25,000 total possibilities. 
 

Plant ID: mica           MW > 0: Generating 

Number of generator combinations: 15   Forebay minimum: 707    Plant load increment: 10    MW = 0: Speed No Load 

Tailwater minimum: 567.54  Forebay increment: 2  Downstream Elevation: 572    MW < 0: S.C. 

            MW = -99: Offline 
           
Index Combo GPlnt 

(MW) 
ForeBay 

  (m)  
Q_Turb 
 (cms) 

Eff 
(%) 

G1 
(MW) 

G2 
(MW) 

G3 
(MW) 

G4 
(MW) 

Q1 
(cms) 

Q2 
(cms) 

Q3 
(cms) 

Q4 
(cms) 

Eff1 
(%) 

Eff2 
(%) 

Eff3 
(%) 

Eff4 
(%) 

G1Max 
(MW) 

G2Max 
(MW) 

G3Max 
(MW) 

G4Max 
(MW) 

30 1 420 757 7608 86.2 420 -99 -99 -99 262.4 0 0 0 86.2 0 0 0 435 -99 -99 -99 

31 1 430 757 7608 86 430 -99 -99 -99 269.2 0 0 0 86 0 0 0 435 -99 -99 -99 

417 2 280 707 7608 82.8 -99 280 -99 -99 0 247.3 0 0 0 82.8 0 0 -99 435 -99 -99 

418 2 290 707 7608 82.6 -99 290 -99 -99 0 256.9 0 0 0 82.6 0 0 -99 435 -99 -99 

921 3 780 709 743.8 75.6 390 390 -99 -99 371.9 371.9 0 0 75.6 75.6 0 0 435 435 -99 -99 

922 3 790 709 756.41 75.3 395 395 -99 -99 378.2 378.2 0 0 75.3 75.3 0 0 435 435 -99 -99 

923 3 800 709 769.01 75 400 400 -99 -99 384.5 384.5 0 0 75 75 0 0 435 435 -99 -99 

2190 4 350 721 7608 87.7 -99 -99 350 -99 0 0 265.4 0 0 0 87.7 0 -99 -99 465 -99 

2191 4 360 721 7608 87 -99 -99 360 -99 0 0 275.2 0 0 0 87 0 -99 -99 465 -99 

2192 4 370 721 7608 86.1 -99 -99 370 -99 0 0 285.9 0 0 0 86.1 0 -99 -99 465 -99 

2675 5 560 709 474.4 85.1 275 -99 285 -99 239.6 0 234.8 0 82.8 0 87.5 0 435 -99 465 -99 

2676 5 570 709 483.43 85.1 279 -99 291 -99 243.2 0 240.2 0 82.7 0 87.4 0 435 -99 465 -99 

2677 5 580 709 492.77 84.9 286 -99 294 -99 249.7 0 243 0 82.6 0 87.3 0 435 -99 465 -99 

4287 6 740 709 681.52 78.3 -99 426 314 -99 0 415.4 266.1 0 0 74 85.1 0 -99 435 465 -99 

4288 6 750 709 694.12 77.9 -99 435 315 -99 0 426.6 267.5 0 0 73.6 84.9 0 -99 435 465 -99 

4289 6 760 709 707.75 77.5 -99 435 325 -99 0 426.8 281 0 0 73.5 83.4 0 -99 435 465 -99 

5650 7 1300 709 1324.8 70.8 435 435 430 -99 438 438 448.8 0 71.6 71.6 69.1 0 435 435 464 -99 

5651 7 1310 709 1340.8 70.5 435 435 440 -99 438.3 438.3 464.3 0 71.6 71.6 68.4 0 435 435 464 -99 

5652 7 1320 709 1356.9 70.2 435 435 450 -99 438.5 438.5 479.8 0 71.6 71.6 67.6 0 435 435 464 -99 

8220 8 310 723 7608 88.9 -99 -99 -99 310 0 0 0 229 0 0 0 88.9 -99 -99 -99 465 

8221 8 320 723 7608 88.9 -99 -99 -99 320 0 0 0 236.3 0 0 0 88.9 -99 -99 -99 465 

8222 8 330 723 7608 88.8 -99 -99 -99 330 0 0 0 244 0 0 0 88.8 -99 -99 -99 465 

9098 9 490 727 385.06 81.4 360 -99 -99 130 273.1 0 0 112 84.4 0 0 74.3 435 -99 -99 465 

9099 9 500 727 394.11 81.2 370 -99 -99 130 282.1 0 0 112 83.9 0 0 74.3 435 -99 -99 465 

9100 9 510 727 403.53 80.9 380 -99 -99 130 291.5 0 0 112 83.4 0 0 74.3 435 -99 -99 465 

MAX  757 1901.2 89.7 1800 

MIN  707 85.3 55 100 

AVG  732 558.6 83.9 750 
 


